[2] (a) The figure below shows four functions, $\phi_1(t)$, $\phi_2(t)$, $\phi_3(t)$ and $\phi_4(t)$.

It can be verified that $\phi_1(t)$ and $\phi_2(t)$ forms a set of *orthonormal* basis functions. Clearly list three other pairs of *orthogonal* functions.

By inspection (using even/old properties): $\{ \phi_1(t), \phi_2(t) \}$, $\{ \phi_2(t), \phi_3(t) \}$ [4] (b) Using orthonormal functions $\phi_1(t)$ and $\phi_2(t)$ to construct two signals as follows: $\{ \phi_3(t), \phi_4(t) \}$

$$s_1(t) = rac{2}{3}\phi_1(t) + rac{2}{3}\phi_2(t), \quad s_2(t) = -rac{2}{3}\phi_1(t) + rac{1}{3}\phi_2(t).$$

Obtain and neatly plot the two waveforms $s_1(t)$ and $s_2(t)$. Also clearly show the locations of the two waveforms (i.e., the tips of the corresponding signal vectors) on the signal space diagram spanned by $\{\phi_1(t), \phi_2(t)\}$. Compute the distance between $s_1(t)$ and $s_2(t)$.

$$d_{12}^{2} = (\frac{1}{3})^{2} + (\frac{4}{3})^{2} = \frac{17}{9} \Rightarrow d_{12} = \frac{\sqrt{17}}{3}$$

[2] (c) Next, consider signal $s_3(t)$ as shown above. It is known that $s_3(t)$ can also be represented as a linear combination of $\phi_1(t)$ and $\phi_2(t)$. Obtain such a combination and clearly show the location of $s_3(t)$ on the same signal space diagram in Part (b).

$$S_{31} = \int_{0}^{T_b} S_3(t) \phi_1(t) dt = -\frac{3}{2}; S_{32} = \int_{0}^{T_b} S_3(t) \phi_2(t) dt = \frac{3}{2}$$

 $\Rightarrow S_3(t) = -\frac{3}{2} \phi_1(t) + \frac{3}{2} \phi_2(t)$

[2] (d) From the signal space diagram, determine the energy of signal $s_3(t)$. Also determine whether $s_3(t)$ is orthogonal to $s_1(t)$ and/or $s_2(t)$.

$$E_3 = 1.5^2 + (4.5)^2 = \frac{9}{2} = 4.5$$
 joules; $S_3(t)$ is orthogonal to $S_1(t)$, but not to $S_2(t)$